Harlan Teklad 2018  global 18% protein rodent diets

Harlan Teklad 2018  global 18% protein rodent diets

Harlan Teklad动物饲料


Home + Teklad diet, bedding and enrichment + Teklad laboratory animal diets + Standard natural ingredient diets + Rodent diets + 2018 Teklad global 18% protein rodent diets

Product Features

  • Designed to support gestation, lactation, and growth
  • Formulated to reduce soybean meal, thus minimizing the presence of isoflavones, the primary type of phytoestrogen found in lab animal diets
  • Typical isoflavone concentrations (daidzein + genistein aglycone equivalents) range from 150 to 250 mg/kg
  • Exclusion of alfalfa reduces chlorophyll, greatly improving fluorescent optical imagingclarity
  • Absence of animal protein and fish meal minimizes the presence of nitrosamines (a potential carcinogen)
Teklad rodent diets Non-autoclavable form Autoclavable Irradiated
Teklad global 18% protein 2018, 2018C 2018S, 2018SX 2918
Not all products are stocked locally; extended lead time and additional fees may apply.
Many diets are available in certified format designated by a “C” following the product code. When diets are certified a representative sample is tested for a panel of contaminants. If not stocked as certified, certification can be made available upon request. Minimum order size and additional charges may apply.


  • 用于支持妊娠、哺乳和生长的
  • 减少豆粕的配方,从而尽量减少异黄酮的存在。异黄酮是大豆的主要类型。植物雌激素在实验室动物饮食中发现的
  • 典型的异黄酮浓度(大豆苷元+染料木素苷元当量)为150至250毫克/千克。
  • 紫花苜蓿的排斥降低了叶绿素含量,大大提高了叶绿素含量。荧光光学成像清晰性
  • 缺乏动物蛋白质和鱼粉可使亚硝胺(一种潜在的致癌物质)的存在减少到最低限度。
特克勒德啮齿类食物 不可蒸压式 高压釜 辐照
Teklead全局18%蛋白 2018,2008 c 2008 S, 2018SX 2918

Harlan Teklad NAFLD and NASH

Harlan Teklad NAFLD and NASH

Harlan Teklad动物饲料

Teklad diet, bedding and enrichment    Teklad laboratory animal diets   Custom research diets   NAFLD and NASH


  • 长期喂饲可诱发肥胖、代谢综合症及轻微纳什或
  • 短时间喂饲可诱发严重纳什的肝脏特征而不引起肥胖或胰岛素抵抗的饮食。


Dietary methods to induce NAFLD/NASH in rodents can be split into two common categories:

  • diets fed for longer periods of time to induce obesity, metabolic syndrome, and mild NASH or
  • diets fed for short periods of time to induce hepatic features of severe NASH without inducing obesity or insulin resistance

This page provides further information on dietary methods to induce NAFLD/NASH. We’ve also prepared a downloadable NASH/NAFLD mini paper.

The tables below highlight diet options from both of the above categories. For more complete descriptions of NAFLD/NASH models see the drop down menus that follow the tables.

Diet options for inducing obesity, metabolic syndrome and mild NAFLD/NASH
Diet features Western/Fast Food ALIOS FPC diet
Product Code TD.88137 TD.06303 TD.160785 PWD dough

TD.190142 pellet

Fat, % Kcal 42 45 52
Fat Sources,
% by weight
21% milk fat 22% hydrogenated vegetable oil
1% soybean oil
19% hydrogenated vegetable oil
6% milk fat
4% palmitic acid
Fatty acid profile,
% total fat
66% saturated
30% monounsaturated
4% polyunsaturated
23% saturated
31% monounsaturated (cis)
12% polyunsaturated (cis)
34% trans
43% saturated
27% monounsaturated (cis)
7% polyunsaturated (cis)
23% trans
Sugars, % by weight 34.5% sucrose 22.4% sucrose 34.5% sucrose
Cholesterol, % by weight 0.2 0 1.25
Modifications TD.96121 1.25% cholesterol
TD.120528 Increased sucrose, 1.25% cholesterol
TD.120330 0.2% cholesterol
TD.130885 0.2% cholesterol, 27% sucrose
TD.140154 adds customer supplied palmitic acid

For high fat diet options to induce uncomplicated NAFLD see our Diet Induced Obesity page.

Diet options for inducing more severe hepatic NAFLD/NASH without obesity or metabolic syndrome
Diet features High Fat, Cholesterol & Cholate Methionine/choline deficient (MCD)
Product Code TD.02028 TD.90262
Fat, % Kcal 42 22
Fat Sources,
% by weight
21% milk fat 10% corn oil
Fatty acid profile,
% total fat
66% saturated
30% monounsaturated
4% polyunsaturated
14% saturated
28% monounsaturated
58% polyunsaturated
Sugars, % by weight 33.3% sucrose 46% sucrose
Cholesterol, % by weight 1.25 0
Cholate Source, % by weight 0.5 0
Related diets TD.09237 15% milk fat, 1% cholesterol
TD.88051 Hybrid version
TD.94149 MCD control diet

Diets inducing obesity, metabolic syndrome and mild NAFLD/NASH

Western or fast food style diets fed to induce NASH with metabolic syndrome contain 40 – 45% kcal from milkfat (a fat source high in palmitate) with added cholesterol (0.15 – 2%) and are high in sucrose (>30%). Dietary palmitate and cholesterol have both previously been associated with the progression from simple steatosis to NASH.


  • TD.88137       Adjusted Calories Diet (42% from fat)
  • TD.96121       21% MF, 1.25% Chol. Diet
  • TD.120528     42% Kcal/Fat Diet (Incr. Sucrose, 1.25% Chol.)

Research use:

These diets can induce obesity, metabolic syndrome, and simple steatosis within nine weeks of feeding. Increased hepatic inflammation has been observed after 12 weeks of feeding. NASH typically requires longer feeding with fibrosis developing within nine months and late stage fibrosis including hepatic ballooning occurring after 14 – 20 months of feeding. Increasing dietary sucrose (~41%) and cholesterol (~1.25%) accelerates the NASH phenotype with steatosis, inflammation and hepatocyte ballooning observed within 12 weeks. In addition to feeding a high fat diet, providing a glucose/fructose mixture in the drinking water may further promote NASH development.

Select References:

Charlton, M., et al., Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol, 2011. 301(5): p. G825-34. http://www.ncbi.nlm.nih.gov/pubmed/21836057

Gores, G., Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, Masuoko H. Am J Physiol Gastrointest Liver Physiol, 2015. 308: p. G159. http://ajpgi.physiology.org/content/308/2/G159

Li, Z.Z., et al., Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem, 2009. 284(9): p. 5637-44. http://www.ncbi.nlm.nih.gov/pubmed/19119140

Ioannou, G.N., et al., Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res, 2009. 54(5): p. 1326-34. http://www.ncbi.nlm.nih.gov/pubmed/23417738

Alkhouri, N., et al., Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem, 2010. 285(5): p. 3428-38. http://www.ncbi.nlm.nih.gov/pubmed/19940134

Dixon, L.J., et al., Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One, 2013. 8(2): p. e56100. http://www.ncbi.nlm.nih.gov/pubmed/23409132

DeLeve, L.D., et al., Prevention of hepatic fibrosis in a murine model of metabolic syndrome with nonalcoholic steatohepatitis. Am J Pathol, 2008. 173(4): p. 993-1001. http://www.ncbi.nlm.nih.gov/pubmed/18772330

VanSaun, M.N., et al., High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. Am J Pathol, 2009. 175(1): p. 355-64. http://www.ncbi.nlm.nih.gov/pubmed/19541928

Asgharpour, A., et al., A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol, 2016. 65(3): p. 579-88. http://www.ncbi.nlm.nih.gov/pubmed/27261415

Tetri, L.H., et al., Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol, 2008. 295(5): p. G987-95. http://www.ncbi.nlm.nih.gov/pubmed/18772365

Tsuchida, T., et al., A simple diet-and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. Journal of hepatology, 2018. 69(2):385-395. https://www.ncbi.nlm.nih.gov/pubmed/29572095

The American Lifestyle-Induced Obesity Syndrome (ALIOS) model involves feeding the “American fast food” diet high in trans-fats and sugar. Dietary trans-fats from hydrogenated vegetable shortening (HVO) are associated with increased insulin resistance and hepatic inflammation in rodent NASH models. In addition to diet, a glucose/fructose solution is added to the drinking water and sedentary behavior promoted by removing the overhead cage feeders in this model.


  • TD.06303       22% HVO Diet
  • TD.120330     22% HVO + 0.2% Cholesterol Diet
  • TD.130885     ALIOS with Added Sugar

Research use:

The ALIOS model develops obesity with insulin resistance, elevated ALT levels, and steatosis within 16 weeks. Increased inflammation and early development of fibrosis have been observed at 6 months. Severe steatosis with fibrosis and inflammation develops within 12 months of feeding with 50% of the mice reportedly developing hepatic neoplasms. Adding cholesterol (0.2%) to the American Fast Food diet may accelerate NASH phenotype development.

Select References:

Koppe, S.W., et al., Trans fat feeding results in higher serum alanine aminotransferase and increased insulin resistance compared with a standard murine high-fat diet. Am J Physiol Gastrointest Liver Physiol, 2009. 297(2): p. G378-84. http://www.ncbi.nlm.nih.gov/pubmed/19541924

Tetri, L.H., et al., Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol, 2008. 295(5): p. G987-95. http://www.ncbi.nlm.nih.gov/pubmed/18772365

Mells, J.E., et al., Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol, 2012. 302(2): p. G225-35. http://www.ncbi.nlm.nih.gov/pubmed/22038829

Dowman, J.K, et al., Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle. Am J Pathol, 2014. 184(5):1550-1561. https://www.ncbi.nlm.nih.gov/pubmed/24650559 

Mells, J.E., et al., Saturated fat and cholesterol are critical to inducing murine metabolic syndrome with robust nonalcoholic steatohepatitis. J Nutr Biochem, 2014. 26(3): p. 285-92. http://www.ncbi.nlm.nih.gov/pubmed/25577467

The Fructose, Palmitate, Cholesterol and Trans-Fat (FPC) diet is a recent NASH diet that includes Western and ALIOS model diets to achieve both metabolic and hepatic NASH features within an accelerated time frame. Key features of the FPC diet include 1) a lower Met content than typical rodent diets by decreasing total protein without supplementing sulfur amino acids; 2) choline supplementation is lower than typical but is not considered deficient; 3) high in sucrose (~34% by weight); 4) 1.25% cholesterol; 5) 52% kcal from fat with fat sources including milkfat fat, palmitic acid and hydrogenated vegetable shortening to provide trans-fats. Like the ALIOS model, the FPC model also provides a glucose/fructose solution to the drinking water.


  • TD.160785     52 kcal/Fat Diet (C16:0, HVO, AMF, Choline/Met)

Research use:

Male C57BL/6J mice fed the FPC diet and provided a glucose/fructose drinking solution developed insulin resistance and NAFLD with inflammation, hepatocyte death, and fibrosis within 16 weeks.

Select References:

Wang, X., et al., Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab, 2016. 24(6): p. 848-62. https://www.ncbi.nlm.nih.gov/pubmed/28068223  

Zhu, C., et al., Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci Transl Med, 2018. 10(468). https://www.ncbi.nlm.nih.gov/pubmed/30463916

Common diets to induce obesity (DIO) can be fed to induce uncomplicated NAFLD. These high fat diets typically contain 40–60% kcal from fat without supplemented cholesterol or cholate. Simple sugars such as sucrose or fructose can also be supplemented via diet or water to progress the fatty liver phenotype. Diets can be in pellet or powder/dough form depending on the formula. Some models require limited physical activity and in those cases diets can be fed inside the cage. For more information see our Diet Induced Obesity page.


  • TD.08811       45%kcal Fat Diet (21% MF, 2% SBO)
  • TD.06414       Adjusted Calories Diet (60/Fat)

Research use:

In susceptible rodent models, high fat diets are commonly used to induce NAFLD with obesity and insulin resistance common metabolic features associated with NASH in humans. However, the degree of NASH pathology (steatosis, inflammation, and fibrosis) is limited or mild and varies depending on the animal model, length of feeding, and dietary components.

Diets to induce severe hepatic NAFLD/NASH without obesity or metabolic


Originally formulated to induce mild atherosclerosis in wild-type rodents, high fat diets containing added cholesterol (1 – 1.25%) and cholate (0.5% as sodium cholate or cholic acid) have also been useful in inducing NASH. This diet option includes purified “Western” style diets with increased cholesterol and cholate and also hybrid diets. Hybrid diets were originally developed by Beverly Paigen and colleagues by mixing a natural ingredient mouse diet in a 3:1 ratio with a concentrated purified diet (containing 5% cholesterol and 2% sodium cholate) resulting in a diet containing ~15.8% fat, 1.25% cholesterol, and 0.5% sodium cholate. Although a less refined approach, the hybrid diet is associated with increased gallstone formation and liver damage as compared to similar purified diets.


  • TD.02028       Atherogenic Rodent Diet
  • TD.88051       Cocoa Butter Diet and Purina Mouse Chow
  • TD.09237       15% AMF Diet (1% Chol, 0.5% NaChol)

Research use:

Atherogenic diets are able to induce varied degrees of NASH with increased hepatic inflammation with early fibrosis observed after ten weeks of feeding. However, the metabolic profile typical in human NASH (obesity with insulin resistance) is not recapitulated in this model with animals typically maintaining similar body weights as control fed groups without the development of metabolic syndrome.

Select References:

Nishina, P.M., J. Verstuyft, and B. Paigen, Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res, 1990. 31(5): p. 859-69. http://www.ncbi.nlm.nih.gov/pubmed/2380634

Kamari, Y., et al., Lack of interleukin-1alpha or interleukin-1beta inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol, 2011. 55(5): p. 1086-94. http://www.ncbi.nlm.nih.gov/pubmed/21354232

Kim, D.G., et al., Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation, 2016. 13: p. 1. http://www.ncbi.nlm.nih.gov/pubmed/26728181

Madrigal-Perez, V.M., et al., Preclinical analysis of nonsteroidal anti-inflammatory drug usefulness for the simultaneous prevention of steatohepatitis, atherosclerosis and hyperlipidemia. Int J Clin Exp Med, 2015. 8(12): p. 22477-83. http://www.ncbi.nlm.nih.gov/pubmed/26885230

Savransky, V., et al., Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am J Physiol Gastrointest Liver Physiol, 2007. 293(4): p. G871-7. http://www.ncbi.nlm.nih.gov/pubmed/17690174

Methionine and choline deficient (MCD) diets are amino acid defined rodent diets deficient in methionine and choline, high in sucrose (>40% by weight) with ~10% corn oil by weight. Methionine and choline deficiency decreases fat oxidation and export of fat from the liver. Dietary sucrose is necessary for hepatic lipid accumulation and oxidation. The polyunsaturated fat in corn oil promotes hepatic lipid oxidation.


  • TD.90262       Methionine/Choline Deficient Diet


  • TD.94149       Amino Acid Control Diet

Research use:

Steatosis, increased serum alanine aminotransferase (ALT), inflammation, and hepatic fat oxidation has been observed within three weeks of feeding the MCD diet with fibrosis development after six weeks. This dietary model does not produce metabolic syndrome (an aspect of NASH in human models) and progressive weight loss (up to 40%) is associated with the MCD diet feeding.


例子:TD.90262 蛋氨酸/胆碱缺乏症饮食
管制:TD.94149 氨基酸控制饮食



Select References:

Pickens, M.K., et al., Dietary sucrose is essential to the development of liver injury in the MCD model of steatohepatitis. J Lipid Res, 2009. 50(10):2072-82.  http://www.ncbi.nlm.nih.gov/pubmed/19295183

Li, Z.Z., et al., Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem, 2009. 284(9): p. 5637-44. http://www.ncbi.nlm.nih.gov/pubmed/19119140

Lee, G.S., et al., Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury. J Lipid Res, 2007. 48(8): p. 1885-96. http://www.ncbi.nlm.nih.gov/pubmed/17526933

Vetelainen, R., A. van Vliet, and T.M. van Gulik, Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model. J Gastroenterol Hepatol, 2007. 22(9): p. 1526-33. http://www.ncbi.nlm.nih.gov/pubmed/17716355

Leclercq, I.A., et al., Intrahepatic insulin resistance in a murine model of steatohepatitis: effect of PPARgamma agonist pioglitazone. Lab Invest, 2007. 87(1): p. 56-65. http://www.ncbi.nlm.nih.gov/pubmed/17075577

Kashireddy, P.R. and M.S. Rao, Sex differences in choline-deficient diet-induced steatohepatitis in mice. Exp Biol Med (Maywood), 2004. 229(2): p. 158-62. http://www.ncbi.nlm.nih.gov/pubmed/14734794

Dixon, L.J., et al., Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest, 2012. 92(5): p. 713-23. http://www.ncbi.nlm.nih.gov/pubmed/22411067

Dietary models of NAFLD/NASH continue to evolve with the goal of more accurately recapitulating both the metabolic and hepatic symptoms of human disease. Commonly researchers are studying the synergistic effects of various NASH dietary features to accelerate progression of the model and severity of liver disease.

A Teklad nutritionist can work with you to formulate new diets in order to investigate novel dietary models of NAFLD/NASH.

The choice of control diet is dependent on the specific research goal. Many researchers choose to compare their NAFLD/NASH diet-fed animals to animals fed a natural ingredient, grain-based diet (also referred to as standard diet or chow). These diets differ in the source and level of nutrients as well as in the presence of non-nutritive factors (such as phytates or phytoestrogens).

Depending on what your main comparisons are, it may be suitable to have a grain-based diet as your control/reference group. However, making such comparisons limits inferences to dietary patterns versus a specific dietary component. In some cases, such as those studies feeding amino acid defined diets like the MCD model, a matched control diet is recommended given the very different formulations and protein sources of grain-based diets.

When making inferences about specific nutrients within the diet an ingredient matched, low fat control diet may be necessary. There are many options with different levels and types of fat in addition to different types of carbohydrate ranging from sucrose (highly refined and digestible) to corn starch (refined, but more complex) to resistant starch (refined, but not fully digestible).

A very basic purified control diet would be AIN-93M TD.94048 or AIN-93G TD.94045. AIN-93 diets have a moderate amount of sucrose at ~10% with fat from soybean oil providing a healthy fatty acid profile.

Contact a nutritionist for an additional information and control diet recommendations.




一种非常基本的纯正控制饮食将是-9300万。TD.94048或者是93g TD.94045。AIN-93日粮中含有适量的蔗糖~10%,大豆油中的脂肪提供了健康的脂肪酸谱。

Need more information? A Teklad nutritionist will work with you to determine if existing diets will meet your needs or formulate new diets to help you investigate novel dietary models of NAFLD/NASH. Contact us for a diet consultation.

Harlan TD.07864 1% Choline Diet (2018)饲料说明书

Harlan TD.07864 1% Choline Diet (2018)饲料说明书

Harlan Teklad动物饲料

Formula g/Kg
2018, Teklad Global 18% Protein Rodent Diet 988.2
Choline Chloride, customer supplied 11.8


The 2018 Teklad Global diet with 1% added choline from choline chloride (approx. 85% choline).

Selected Nutrient Information1

% by weight % kcal from
Protein 18.0 22.9
Carbohydrate2 47.4 60.5
Fat 5.8 16.6
Kcal/g 3.1
  • Values are calculated from ingredient analysis or manufacturer data
  • Estimated digestible carbohydrate

Key Features

  • Standard Diet Base
  • Choline
  • Customer Supplied Ingredient
  • Teklad 2018

Key Planning Information

  • Products are made fresh to order
  • Store product at 4°C or lower
  • Use within 6 months (applicable to most diets)
  • Box labeled with product name, manufacturing date, and lot number
  • Replace diet at minimum once per week

More frequent replacement may be advised

  • Lead time:
  • 2 weeks non-irradiated
  • 4 weeks irradiated


Wako 和光纯药 011-27991 Anti Iba1, Goat Iba1抗体,山羊源多克隆抗体

Wako 和光纯药 011-27991 Anti Iba1, Goat  Iba1抗体,山羊源多克隆抗体

名称:Anti Iba1, Goat
用途:for Immunochemistry

Storage Condition : Keep at -20 degrees C.

Application Data

Immunohistochemistry (fluorescent staining)


Immunohistochemistry of frozen section in mouse model of Alzheimer’s disease (APPNL-G-F mouse) brain cerebral neocortex using anti Iba1, goat polyclonal antibody at dilution of 1:1,000, and anti goat IgG, Alexa Flour 488-conjugated. Aβ were stained by 0.001% FSB solution(Amyloid fluorescent probe). The data were provided by Dr. Sakakibara, National Center for Geriatrics and Gerontology in Japan.


Immunohistochemistry of frozen section in rat(left) and mouse(right) brain cerebral cortex using anti Iba1, goat polyclonal antibody at dilution of 1:250, and anti goat IgG, Alexa Flour 488-conjugated.
The data were provided by Dr. Nakajima from Soka University in Japan.

Immunohistochemistry(DAB staining)


Sample: paraffin section of mouse brain frontal lobe
1st antibody: Anti Iba1, goat(1:1.000)
2nd antibody: Anti goat IgG, biotin-conjugated
Antigen retrieval: 10mM citric acid buffer(pH6.0), 90℃, 10min

Western Blotting


The data were provided by Dr. Nakajima from Soka University in Japan.

Microglia from rat primary culture 10μg
Neuron from rat primary culture 10μg
Astrocyte from rat primary culture 10μg
Cerebral cortex from rat brain 100μg

1st antibody: Anti Iba1, goat(1:1.000)
2nd antibody: Anti goat IgG, HRP-conjugated

Antibody Profile

Antigen Synthetic peptide corresponding to C-terminal of Iba1
Buffer TBS
Species cross-reactivity Rat and Mouse
Antibody concentration 0.5-0.7 mg/mL
Application Immunohistochemistry(frozen section) 1:250-1,000
Immunohistochemistry(paraffin section) 1:250-1,000
Western blotting 1:1,000

Overview / Applications

Outline Iba1 is a calcium-binding protein with a molecular weight of 17,000 specifically expressed in macrophage and microglia.This product is goat polyclonal antibody that specifically recognize Iba1, and is available for a microglial marker.

Antigen: synthetic peptide(C-terminal of Iba1)
Cross-reactivity: mouse, rat
Immunohistochemistry(frozen section) 1:250-1,000
Immunohistochemistry(paraffin section) 1:250-1,000
Western Blotting 1:1,000


Appearance Liquid


  • Anti Iba1, Goat Polyclonal Antibody
    Anti AIF1, Goat Polyclonal Antibody
    Anti IRT1, Goat Polyclonal Antibody



Wako 聚乙烯醇Poly(vinyl Alcohol CAS 9002-89-5

Wako 聚乙烯醇Poly(vinyl Alcohol  CAS  9002-89-5

WAKO 和光纯药代理商上海金畔生物,欢迎广大新老客户访问日本Wako试剂官网或者咨询我们获取更多详细信息。

品牌 产品编号 产品名称 等级 规格 CAS No.
Wako 163-03045 Polyvinyl Alcohol (Polymerization Degree about 500) 聚乙烯醇(聚合度 500) No grade 500 g 9002-89-5
Wako 165-16315 Poly(vinyl Alcohol) 500, Completely Hydrolyzed  聚乙烯醇 500,完全水解 Wako 1st Grade 500 g 9002-89-5
Wako 165-17915 Polyvinyl Alcohol 聚乙烯醇 JIS Special Grade 500 g 9002-89-5
Wako 160-08295 Polyvinyl Alcohol  聚乙烯醇 for Absorptiometric Analysis 500 g 9002-89-5
Wako 160-03055 Polyvinyl Alcohol (Polymerization Degree about 1500) 聚乙烯醇(聚合度约1500) No grade 500 g 9002-89-5
Wako 160-11485 Polyvinyl Alcohol 聚乙烯醇 Wako 1st Grade 500 g 9002-89-5
Wako 162-16325 Poly(vinyl Alcohol) 1,000, Completely Hydrolyzed 聚乙烯醇 1000,完全氢化水解 Wako 1st Grade 500 g 9002-89-5
Wako 163-16355 Poly(vinyl Alcohol) 3,500, Partially Hydrolyzed 聚乙烯醇 3500,部分水解 Wako 1st Grade 500 g 9002-89-5
Wako 167-03065 Polyvinyl Alcohol (Polymerization Degree about 2000) 聚乙烯醇(聚合度 2000) No grade 500 g 9002-89-5
Wako 169-16335 Poly(vinyl Alcohol) 1,000, Partially Hydrolyzed 聚乙烯醇 1000,部分水解 Wako 1st Grade 500 g 9002-89-5

Wako 014-18331 Acibenzolar-S-methyl Standard 噻二唑素-S-甲基标准品

Wako 014-18331 Acibenzolar-S-methyl Standard 噻二唑素-S-甲基标准品

英文名称:Acibenzolar-S-methyl Standard
CAS No.:135158-54-2
纯度:99.0+% (qNMR)





食用含有大量高毒、剧毒农药残留引起的食 物会导致人、 畜急性中毒事故。长期食用农 药残留超标的农副产品,虽然不会导致急性中 毒,但可能引起人和动物的慢性中毒,导致疾病的发生,甚至影响到下一代。


由于不合理使用农药,特别是除草剂, 导致药害事故频繁, 经常 引起大面积减产甚至绝产,严重影响了农业生产。土壤中残留的长残 效除草剂是其中的一个重要原因。


世 界各国,特别是发达国家对农药残留问题高度重视, 对各种农副产品 中农药残留都规定了越来越严格的限量标准。许多国家以农药残留限量为技术壁垒,限制农副产品进口,保护农业生产。2000年,欧共体将氰戊菊酯在茶叶中的残留限量从 10毫克/千克降低到0.1毫克/千克,使中国茶叶出口面临严峻的挑战。


世界卫生组织和联合国粮 农组织(WHO/FAO)对农药残留限量的定义为 , 按照良好的农业生产(GAP)规范,直接或间接使用农药后,在食品和饲料中形成的农药残留物的最大浓度。目前,中国已制定了79种农药在32种(类 )农副产品中197项农药最高残留限量 (MRL)的国家标准。

农药标准品 (一)

农残专用级别或HPLC级别的农药标准品, 纯度均大于98%。

产品编号 产品名称 中文名称 CAS NO. 包装
205-16281 beta-Trenbolone Standard 三烯酮标准品 10161-33-8 200mg
020-15311 Butylhydroxyanisole Standard (mixture of isomers) 丁基羟基茴香醚标准品 25013-16-5 200mg
086-08241 Hydrocortisone Standard 氢化可的松标准品 50-23-7 200mg
158-02531 Oxacillin Sodium Monohydrate Standard 苯唑西林钠一水合物标准品 7240-38-2 200mg
159-2561 Oxydozanide Standard 五氯柳胺标准品 2277-92-1 200mg
208-16271 Trenbolone Acetate Standard 乙酸去甲雄三烯醇酮标准品 10161-34-9 200mg
159-02681 (5Z)-Orysastrobin Standard (5z)-肟醚菌胺标准品 50mg
011-20051 (Aminomethyl)phosphonic Acid Standard 氨甲基磷酸标准品 1066-51-9 200mg
044-26063 (E)-Dimethylvinphos Standard E-甲基毒虫畏标准品 71363-52-5 50mg
063-04131 (E)-Ferimzone Standard E-嘧菌腙标准品 200mg
139-15891 (E)-Metominostrobin Standard (E)-苯氧菌胺标准品 133408-50-1 100mg
132-15521 (E)-Mevinphos Standard (E)-速灭磷标准品 298-01-1 100mg
167-16691 (E)-Pyrifenox Standard E-啶斑肟标准品 83227-22-9 200mg
166-19841 (E)-Pyriminobac-methyl Standard 嘧草醚标准品 147411-696 200mg
215-01331 (R)-Uniconazole Standard 烯效唑标准品 83657-16-3 50mg
023-12741 (RS)-s-Butylamine Standard (+/-)-1-甲基丙胺标准品 13952-84-6 200mg
045-25231 (Z)-DimethyMnphos Standard (Z)二甲基亚硝胺标准品 67628-93-7 200mg
067-05011 (Z)-Fenpyroximate Standard (z)-唑螨酯标准品 149054-53-5 20mg
066-04121 (Z)-Ferimzone Standard (Z)-嘧菌腙标准品 89269-64-7 200mg
139-15911 (Z)-Metominostrobin Standard (z)-苯氧菌胺标准品 133408-51-2 20mg
139-15531 (Z)-Mevinphos Standard (Z)-速灭磷标准品 33845-4 100mg
160-16701 (Z)-Pyrifenox Standard (Z)-比芬诺标准品 83227-23-0 200mg
163-19851 (Z)-Pyriminobac-methyl Standard (z)-嘧草醚标准品 147411-709 50mg
044-29601 1.1-DiChloro-2.2-bis(4-ethylphenyl)Ethane Standard l,1-二氯-2,2-二(4-乙苯)乙烷标准品 72-56-0 200mg
054-04121 1 2-DIbromoEthane Standard Solution l,2-二溴甲烷标准溶液 106-93-4 1mLx5
133-14831 1-Methylpiperidine Standard 1-甲基哌啶标准品 626-67-5 200mg
141-06501 1-Naphthylacetamide Standard 萘乙酰胺标准品 86-86-2 200mg
148-06511 1-Naphthylacetic Acid Standard a-萘乙酸标准品 86-87-3 200mg
208-11911 2,4,5-T Standard 2,4,5-T标准品 93-76-5 200mg
204-13451 2,4,5-T-butyl Standard 2,4,5-特丁基标准品 93-79-8 200mg
203-15481 2,4,6-Tnchlorophenol Standard 三氧苯酚标准品 32296 200mg
048-29741 2,4-DB Standard 2,4-DB标准品 94-82-6 200mg
045-25591 2,4-DiChloroaniline Standard 2,4-二氯苯胺标准品 554-00-7 200mg
164-18161 2,4-PA-butyl Standard 2,4-聚酰胺-丁基标准品 94-80-4 200mg
045-29371 2,6-Difluorobenzoic Acid Standard 2,6-二氟苯甲酸标准品 385-00-2 200mg
043-29811 2,6-Diisopropylnaphthalene Standard 2,6-二异丙基标准品 24157-81-1 200mg
011-08711 2-Aminobenzimidazole Standard 2-氨基苯并咪唑标准品 93432-7 200mg
169-17871 2-Phenylphenol Standard 邻苯基苯酚标准品 90-43-7 200mg
206-16951 3-(2,4,6-TrimethylphenylsuIfonyl)-1,2,4-triazole Standard 3-(2,4,6三甲基苯基磺酰基)-1,2,4三唑标准品 149591-20-8 S0mg
134-11941 3-(Methylphosphinico)propionic Acid Standard 3-(甲基膦酸基)丙酸标准品 15090-23-0 200mg
085-08571 3-Hydroxycarbofuran Standard 3-羟基呋喃丹标准品 16655-82-6 50mg
046-28441 4,4-Dimethyl-2-oxazolidinone Standard 4,4-双甲基-2-噁唑烷酮标准品 26654-39-7 200mg
030-19511 4-CPA Standard 对氧苯氧乙酸标准品 122-88-3 200mg
086-08501 4-Hydroxybiphenyl Standard 对羟基苯酚标准品 92-69-3 200mg
131-15731 4-Methyl-1,2,3 thiadiazole-5-Carboxylic Acid standard 4-甲基-1,2,3-噻二唑-5-甲酸标准品 18212-21-0 100mg
080-08521 5-Hydroxythiabendazole Standard 5-羟基噻苯咪唑标准品 948-71-0 20mg
022-15251 6-Benzylaminopunne Standard 6-苄氨基嘌呤标准品 1214-39-7 200mg
032-20561 6-Chloropicolinic Acid Standard 2-氯吡啶-6-羧酸标准品 4684-94-0 100mg
016-20361 Abamectin Standard 阿维菌素标准品 71751-41-2 200mg
018-18591 Acequinocyl Standard 灭螨醌标准品 57960_19_7 200mg
011-18601 Acequinocyl-hydroxy Standard 羟基灭螨醌标准品 57960-31-3 200mg
014-16491 Acetamiprid Standard 啶虫脒标准品 160430-64-8 200mg
013-20511 Acetochlor Standard 乙草胺标准品 34256-82-1 100mg
018-19451 Acibenzolar Acid Standard 阿拉酸式苯标准品 35272-27-6 100mg
014-18331 Acibenzolar-S-methyl Standard 阿拉酸式苯-S-甲基标准品 135158-542 200mg
010-20521 Aafluorfen Standard 三氟羚草醚标准品 50594-66-6 200mg
013-15741 ACN Standard ACN标准品 2797-51-5 200mg
018-16651 Acrinathrin Standard 氟丙菊酯标准品 101007-06-1 200mg
017-15521 Alanycarb Standard 棉铃威标准品 83130-01-2 200mg
018-17011 Allethrin Standard 烯丙菊酯标准品 584-792 200mg
019-20611 Allidocfilor Standard 二丙烯草胺标准品 93-71-0 100mg
015-09733 Alloxydim Sodium Standard 禾草灭标准品 55635-13-7 200mg
019-13641 Ametryn Standard 莠灭净标准品 834-128 200mg
011-14941 Amitraz Metabolite HydroChlonde Standard 双甲脒盐酸盐代谢物标准品 51550-40-4 200mg
015-09593 Amitraz Standard 双甲眯标准品 33089-61-1 200mg

关东化学Kanto 37047-02 二氧化硅 Silicon dioxide

关东化学Kanto 37047-02 二氧化硅 Silicon dioxide




Silica gel, Orange, middle granule

Product No. 37047-02
Package 500g
CAS RN 7631-86-9
Product instructions particle size 1.68mm~4.00mm:80%min


Wako 290-35591 MagCapture™ 系列用磁珠捕获磁力架

MagCapture™ 系列用磁珠捕获磁力架

● 可移动型弹起式的微管架固定装置。

● 可同时进行16支微管的磁珠捕获操作,可移液。

● 采用钕制磁石,缩减捕获时间。


  本产品是用于捕获磁珠的磁性(力)支架。主要适用于MagCapture 系列对细胞培养上清、血清、尿液等样本含有的特定成分纯化而进行的磁珠法。

  可同时进行16支1.5 mL(0.2 mL)微管的操作,因配置强力磁石,可短时间内捕获微小的磁珠。



● 可移动的弹起式微管架固定部。

● 弹起式装置装卸试管,可同时对16支微管进行磁珠捕获。

● 通过变化微管固定装置的角度可进行高效搅拌和灵活捕获。


● 采用钕制磁石,直接接触微管的构造,缩减捕获时间。

● 采用树脂材质,样本的可见性良好,实现了小型轻量化。



案例1.MagCapture Exosome Isolation Kit PS




磁珠捕获时间 1.0 μm磁珠 1 mL:约25秒
2.7 μm磁珠 1 mL:约10秒
4.5 μm磁珠 1 mL:约2秒
作业容量 20 μL~1,500 μL(2,000 μL)
产品尺寸 W198.8×D49×H49(mm)
重量 235 g
产品编号 产品名称 产品规格 产品等级 产品价格
290-35591 MagCapture™ 系列磁珠捕获用磁力架 Magnet Stand 1个

Wako 分散酶 Dispase CAS 9001-92-7

Wako 分散酶 Dispase CAS 9001-92-7



使用指南:推荐浓度为10 U/cm2 BD Matrigel基质,如35 mm的培养皿推荐使用浓度为100U。

Wako 分散酶 Dispase CAS 9001-92-7

383-02281 DISPASEⅡ 分散酶Ⅱ 1 g 9001-92-7
386-02271 DISPASE®Ⅰ 分散酶 10000 PU×6 9001-92-7


货号 品名 规格
Roche-04942078001 Dispase® II (neutral protease, grade II) 1 g
Roche-04942078001 Dispase® II (neutral protease, grade II) 100mg