小胶质标记
鼠源无标签抗Iba1,单克隆抗体(NCNP24)
Iba1是在小胶质细胞和巨噬细胞中高度表达的蛋白质,分子量约17 kDa。 此蛋白质通常称为中枢神经系统中的小胶质细胞标记物。 最近,小胶质细胞已被广泛研究,其负责中枢神经系统中的免疫功能,并且与各种疾病相关,如神经变性疾病,精神错乱,脑肿瘤和感染。 |
类别:Monoclonal
应用物种:IHC(小鼠、大鼠和狨猴冰冻切片,DABlocking)(1:500-2,000),
应用物种:IHC(大鼠冰冻切片,fluorescent)(1:100)
◆特点
● 免疫组化评估
● 用于多色免疫染色
● 具有高特异性和低背景的单克隆抗体
◆应用 – 免疫组织化学染色
→使用抗Iba1,单克隆抗体(FUJIFILM Wako产品编号:012-26723)小胶质细胞的定位信号清晰,与抗Iba1,兔多克隆抗体的效果相同(FUJIFILM Wako产品编号:019-19741、019-19741)。
◆实验条件
● 样品:7周龄大鼠,7周龄小鼠或成年狨猴的大脑皮质
● 切片:50 μm冰冻切片(小鼠和大鼠),40 μm冰冻切片(狨猴)
● 染色法:ABC法+DAB染色
● 抗体浓度= 1:500
数据提供
Sanagi,T., Manabe,T., Ichinohe, N., and Kohsaka, S., National Center of Neurology and Psychiatry in Japan.
抗体信息
抗Iba1,单克隆抗体(NCNP24) |
|
抗原 |
合成肽(Iba1的C末端) |
克隆号 |
NCNP24 |
子类 |
小鼠IgG1 |
浓度 |
1.3 mg/mL |
Buffer缓冲液 |
50%甘油/ TBS,0.05%叠氮化钠 |
物种反应性 |
小鼠,大鼠,狨猴 |
应用 |
免疫组织化学(冷冻切片)(1:500-2,000) |
欲了解相关产品信息请点击文字:
兔源Iba1抗体,有标签
兔源Iba1抗体,无标签
欲了解相关知识请点击文字:
巨噬细胞/小胶质细胞特异性蛋白抗体Iba1的应用
小胶质细胞研究动向与新型Iba1标签抗体
欲了解相关资料请点击文字:
Wako神经生物学抗体清单
巨噬细胞/小胶质细胞Iba1抗体
相关资料
小胶质细胞产品目录
◆相关产品
产品编号 |
产品名称 |
中文名称 |
包装 |
储存条件 |
016-26461 |
Anti Iba1, Rabbit, Biotin-conjugated |
抗Iba1,兔,生物素缀合 |
100 μL |
保存在2-10℃ |
013-26471 |
Anti Iba1, Rabbit, Red Fluorochrome (635)-conjugated |
抗Iba1,兔,红色荧光染料(635)结合 |
100 μL |
参考文献
1. |
Moghaddam, B. (2018). Omega-3 Polyunsaturated Fatty Acid Status, Microglial Activation, Stress Resilience, and Cognitive Performance. Oregon Health and Science University Portland United States. |
2. |
Li, K., Zhou, H., Zhan, L., Shi, Z., Sun, W., Liu, D., … & Xu, E. (2018). Hypoxic preconditioning maintains GLT-1 against transient global cerebral ischemia through upregulating Cx43 and inhibiting c-Src. Frontiers in molecular neuroscience, 11. |
3. |
Gasparotto, J., Ribeiro, C. T., da Rosa-Silva, H. T., Bortolin, R. C., Rabelo, T. K., Peixoto, D. O., … & Gelain, D. P. (2019). Systemic inflammation changes the site of RAGE expression from endothelial cells to neurons in different brain areas. Molecular neurobiology, 56(5), 3079-3089. |
4. |
Wanrooy, B. J., Kumar, K. P., Wen, S. W., Qin, C. X., Ritchie, R. H., & Wong, C. H. (2018). Distinct contributions of hyperglycemia and high-fat feeding in metabolic syndrome-induced neuroinflammation. Journal of neuroinflammation, 15(1), 293. |
5. |
Velazquez, R., Ferreira, E., Winslow, W., Dave, N., Piras, I. S., Naymik, M., … & Oddo, S. (2019). Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Molecular psychiatry, 1. |
6. |
Sanchez-Ruiz, M., Brunn, A., Montesinos-Rongen, M., Rudroff, C., Hartmann, M., Schlüter, D., … & Deckert, M. (2019). Enteric Murine Ganglionitis Induced by Autoimmune CD8 T Cells Mimics Human Gastrointestinal Dysmotility. The American journal of pathology, 189(3), 540-551. |
7. |
Cougnoux, A., Fellmeth, M., Gu, T., Davidson, C. D., Gibson, A. L., Pavan, W. J., & Porter, F. D. (2019). Maternal immune activation modifies the course of Niemann-pick disease, type C1 in a gender specific manner. Molecular genetics and metabolism. |
8. |
Groves, A., Kihara, Y., Jonnalagadda, D., Rivera, R., Kennedy, G., Mayford, M., & Chun, J. (2018). A functionally defined in vivo astrocyte population identified by c-Fos activation in a mouse model of multiple sclerosis modulated by S1P signaling: immediate-early astrocytes (ieAstrocytes). eNeuro, 5(5). |
9. |
Cai, W., Wang, J., Hu, M., Chen, X., Lu, Z., Bellanti, J. A., & Zheng, S. G. (2019). All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. Journal of neuroinflammation, 16(1), 175. |
10. |
Feng, T., Yamashita, T., Shang, J., Shi, X., Nakano, Y., Morihara, R., … & Matsumoto, N. (2019). Clinical and Pathological Benefits of Edaravone for Alzheimer’s Disease with Chronic Cerebral Hypoperfusion in a Novel Mouse Model. Journal of Alzheimer's Disease, (Preprint), 1-13. |
11. |
Chen, Y. J., Nguyen, H. M., Maezawa, I., Jin, L. W., & Wulff, H. (2018). Inhibition of the potassium channel Kv1. 3 reduces infarction and inflammation in ischemic stroke. Annals of clinical and translational neurology, 5(2), 147-161. |
12. |
Michaelis, K. A., Norgard, M. A., Levasseur, P. R., Olson, B., Burfeind, K. G., Buenafe, A. C., … & Marks, D. L. (2019). Persistent Toll-like receptor 7 stimulation induces behavioral and molecular innate immune tolerance. Brain, behavior, and immunity, 82, 338-353. |
13. |
Surrao, D. C., Greferath, U., Chau, Y. Q., Skabo, S. J., Huynh, M., Shelat, K. J., … & Liu, Q. (2017). Design, development and characterization of synthetic Bruch’s membranes. Acta biomaterialia, 64, 357-376. |